Your Title Goes Here

Your content goes here. Edit or remove this text inline or in the module Content settings. You can also style every aspect of this content in the module Design settings and even apply custom CSS to this text in the module Advanced settings.

Click Here

Product Description

 

Product Description

Product Description

-R Series Helical gearbox
 

Product Features:
1.High modular design.
2.Integrated casting housing,compact dimension,high loading support, stable transmitting and low noise level.
3.Perfect oil leakage preventing makes the good sealings and can be used in wide range of industry.
4.This series is special for pug mill.
5.High efficiency and save power.
6.Save cost and low maintenance.

Design Features:
1. Compact structure, modular design
2. Single-stage, two-stage and three-stage sizes
3. Can be combined with other types of gearboxes (Such as R Series, K Series, F Series, S Series, UDL Series)

 

Product Parameters

 

1 Stage
 

Models Output Shaft Dia. Input Shaft Dia. Power(kW) Ratio Max. Torque(Nm)
BRX/BRXF38 20mm 16mm 0.18~1.1 1.62~4.43 20
BRX/BRXF58 20mm 19mm 0.18~5.5 1.3~5.5 70
BRX/BRXF68 25mm 19mm 0.18~7.5 1.4~6.07 135
BRX/BRXF78 30mm 24mm 1.1~11 1.42~8.00 215
BRX/BRXF88 40mm 28mm 3~22 1.39~8.65 400
BRX/BRXF98 50mm 38mm 5.5~30 1.42~8.23 600
BRX/BRXF108 60mm 42mm 7.5~45 1.44~6.63 830
BRX/BRXF128 75mm 55mm 7.5~90 1.51~6.2 1110
BRX/BRXF158 90mm 70mm 11~132 1.57~6.2 1680

2-3Stage
 

Models Output Shaft Dia. Input Shaft Dia. Power(kW) Ratio Max. Torque(Nm)
BR/BRF18 20mm 0.18~0.75 3.83~74.84 85
BR/BRF28 25mm 16mm 0.18~3 3.37~135.09 130
BR/BRF38 25mm 16mm 0.18~3 3.41~134.82 200
BR/BRF48 30mm 19mm 0.18~5.5 3.83~176.88 300
BR/BRF58 35mm 19mm 0.18~7.5 4.39~186.89 450
BR/BRF68 35mm 19mm 0.18~7.5 4.29~199.81 600
BR/BRF78 40mm 24mm 0.18~11 5.21~195.24 820
BR/BRF88 50mm 28mm 0.55~18.5 5.36~246.54 1550
BR/BRF98 60mm 38mm 0.55~30 4.49~289.6 3000
BR/BRF108 70mm 42mm 2.2~45 5.06~249.16 4300
BR/BRF138 90mm 55mm 5.5~55 5.51~222.6 8000
BR/BRF148 110mm 55mm 11~90 5.00~163.31 13000
BR/BRF168 120mm 70mm 11~160 8.77~229.71 18000

 

 

Materials Data Sheet

Housing material

Grey Cast iron

Housing hardness

HBS163~255

Gear material

20CrMnTi alloy steel

Surface hardness of gears

HRC58°~62 °

Gear core hardness

HRC33~48

Input / Output shaft material

40Cr alloy steel

Input / Output shaft hardness

HRC32~36

Machining precision of gears

accurate grinding, 6~5 Grade

Lubricating oil

GB L-CKC220-460, Shell Omala220-460

Heat treatment

tempering, cementiting, quenching, normalizing, etc.

Efficiency

94%~96% (depends on the transmission stage)

Noise (MAX)

60~68dB

Temp. rise (MAX)

40°C

Temp. rise (Oil)(MAX)

50°C

Vibration

≤20µm

Backlash

≤20Arcmin

Brand of bearings

China top brand bearing, HRB/LYC/ZWZ/C&U. Or other brands requested, SKF, FAG, INA, NSK.

Brand of oil seal

NAK — ZheJiang or other brands requested

 

Detailed Photos

 

Our process of production

Our product line

 

 

Company Profile

 

Company Profile

Bode  was founded in 2007, which is located in HangZhou city, ZHangZhoug province. As 1 professional manufacturer and exporter, we have more than 17 years’ experience in R & D of worm reducer, gear reducer, gearbox , AC motor and relative spare parts. We have factory with advanced production and test equipment, the strong development of team and producing capacity offer our customers with high quality products. Our products widely served to various industries of Metallurgy, Chemicals, lifting, mining, Petroleum, textile, medicine, wooden etc. Main markets: China, Africa, Australia, Vietnam, Turkey, Japan, Korea, Philippines… Welcome to ask us any questions, good offer always for you for long term business.

FAQ

Q1: Are you trading company or manufacturer?
A: We are factory.

Q2: What kinds of gearbox can you produce for us?
A: Main products of our company: R, S, K, F series helical-tooth reducer, RV series worm gear reducer,H Series Parallel Shaft Helical Reduction Gear Box

Q3: Can you make as per custom drawing?
A: Yes, we offer customized service for customers.

Q4: Can we buy 1 pc of each item for quality testing?
A: Yes, we are glad to accept trial order for quality testing.

Q5: What information shall we give before placing a purchase order?
A:  a) Type of the gearbox, ratio, input and output type, input flange, mounting position, and motor informationetc.
     b) Housing color.
     c) Purchase quantity.
     d) Other special requirements.

Q6: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock.

Q7: What is your terms of payment ?
A: 30% Advance payment by T/T after signing the contract.70% before delivery

If you are interested in our product, welcome to contact with us.
Our team will do our best to meet your need 🙂 
 

 

Application: Machinery, Marine, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Speed Changing, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Single-Step
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Gear

The Difference Between Planetary Gears and Spur Gears

A spur gear is a type of mechanical drive that turns an external shaft. The angular velocity is proportional to the rpm and can be easily calculated from the gear ratio. However, to properly calculate angular velocity, it is necessary to know the number of teeth. Fortunately, there are several different types of spur gears. Here’s an overview of their main features. This article also discusses planetary gears, which are smaller, more robust, and more power-dense.
Planetary gears are a type of spur gear

One of the most significant differences between planetary gears and spurgears is the way that the two share the load. Planetary gears are much more efficient than spurgears, enabling high torque transfer in a small space. This is because planetary gears have multiple teeth instead of just one. They are also suitable for intermittent and constant operation. This article will cover some of the main benefits of planetary gears and their differences from spurgears.
While spur gears are more simple than planetary gears, they do have some key differences. In addition to being more basic, they do not require any special cuts or angles. Moreover, the tooth shape of spur gears is much more complex than those of planetary gears. The design determines where the teeth make contact and how much power is available. However, a planetary gear system will be more efficient if the teeth are lubricated internally.
In a planetary gear, there are three shafts: a sun gear, a planet carrier, and an external ring gear. A planetary gear is designed to allow the motion of one shaft to be arrested, while the other two work simultaneously. In addition to two-shaft operation, planetary gears can also be used in three-shaft operations, which are called temporary three-shaft operations. Temporary three-shaft operations are possible through frictional coupling.
Among the many benefits of planetary gears is their adaptability. As the load is shared between several planet gears, it is easier to switch gear ratios, so you do not need to purchase a new gearbox for every new application. Another major benefit of planetary gears is that they are highly resistant to high shock loads and demanding conditions. This means that they are used in many industries.

They are more robust

An epicyclic gear train is a type of transmission that uses concentric axes for input and output. This type of transmission is often used in vehicles with automatic transmissions, such as a Lamborghini Gallardo. It is also used in hybrid cars. These types of transmissions are also more robust than conventional planetary gears. However, they require more assembly time than a conventional parallel shaft gear.
An epicyclic gearing system has three basic components: an input, an output, and a carrier. The number of teeth in each gear determines the ratio of input rotation to output rotation. In some cases, an epicyclic gear system can be made with two planets. A third planet, known as the carrier, meshes with the second planet and the sun gear to provide reversibility. A ring gear is made of several components, and a planetary gear may contain many gears.
An epicyclic gear train can be built so that the planet gear rolls inside the pitch circle of an outer fixed gear ring, or “annular gear.” In such a case, the curve of the planet’s pitch circle is called a hypocycloid. When epicycle gear trains are used in combination with a sun gear, the planetary gear train is made up of both types. The sun gear is usually fixed, while the ring gear is driven.
Planetary gearing, also known as epicyclic gear, is more durable than other types of transmissions. Because planets are evenly distributed around the sun, they have an even distribution of gears. Because they are more robust, they can handle higher torques, reductions, and overhung loads. They are also more energy-dense and robust. In addition, planetary gearing is often able to be converted to various ratios.
Gear

They are more power dense

The planet gear and ring gear of a compound planetary transmission are epicyclic stages. One part of the planet gear meshes with the sun gear, while the other part of the gear drives the ring gear. Coast tooth flanks are used only when the gear drive works in reversed load direction. Asymmetry factor optimization equalizes the contact stress safety factors of a planetary gear. The permissible contact stress, sHPd, and the maximum operating contact stress (sHPc) are equalized by asymmetry factor optimization.
In addition, epicyclic gears are generally smaller and require fewer space than helical ones. They are commonly used as differential gears in speed frames and in looms, where they act as a Roper positive let off. They differ in the amount of overdrive and undergearing ratio they possess. The overdrive ratio varies from fifteen percent to forty percent. In contrast, the undergearing ratio ranges from 0.87:1 to 69%.
The TV7-117S turboprop engine gearbox is the first known application of epicyclic gears with asymmetric teeth. This gearbox was developed by the CZPT Corporation for the Ilyushin Il-114 turboprop plane. The TV7-117S’s gearbox arrangement consists of a first planetary-differential stage with three planet gears and a second solar-type coaxial stage with five planet gears. This arrangement gives epicyclic gears the highest power density.
Planetary gearing is more robust and power-dense than other types of gearing. They can withstand higher torques, reductions, and overhung loads. Their unique self-aligning properties also make them highly versatile in rugged applications. It is also more compact and lightweight. In addition to this, epicyclic gears are easier to manufacture than planetary gears. And as a bonus, they are much less expensive.

They are smaller

Epicyclic gears are small mechanical devices that have a central “sun” gear and one or more outer intermediate gears. These gears are held in a carrier or ring gear and have multiple mesh considerations. The system can be sized and speeded by dividing the required ratio by the number of teeth per gear. This process is known as gearing and is used in many types of gearing systems.
Planetary gears are also known as epicyclic gearing. They have input and output shafts that are coaxially arranged. Each planet contains a gear wheel that meshes with the sun gear. These gears are small and easy to manufacture. Another advantage of epicyclic gears is their robust design. They are easily converted into different ratios. They are also highly efficient. In addition, planetary gear trains can be designed to operate in multiple directions.
Another advantage of epicyclic gearing is their reduced size. They are often used for small-scale applications. The lower cost is associated with the reduced manufacturing time. Epicyclic gears should not be made on N/C milling machines. The epicyclic carrier should be cast and tooled on a single-purpose machine, which has several cutters cutting through material. The epicyclic carrier is smaller than the epicyclic gear.
Epicyclic gearing systems consist of three basic components: an input, an output, and a stationary component. The number of teeth in each gear determines the ratio of input rotation to output rotation. Typically, these gear sets are made of three separate pieces: the input gear, the output gear, and the stationary component. Depending on the size of the input and output gear, the ratio between the two components is greater than half.
Gear

They have higher gear ratios

The differences between epicyclic gears and regular, non-epicyclic gears are significant for many different applications. In particular, epicyclic gears have higher gear ratios. The reason behind this is that epicyclic gears require multiple mesh considerations. The epicyclic gears are designed to calculate the number of load application cycles per unit time. The sun gear, for example, is +1300 RPM. The planet gear, on the other hand, is +1700 RPM. The ring gear is also +1400 RPM, as determined by the number of teeth in each gear.
Torque is the twisting force of a gear, and the bigger the gear, the higher the torque. However, since the torque is also proportional to the size of the gear, bigger radii result in lower torque. In addition, smaller radii do not move cars faster, so the higher gear ratios do not move at highway speeds. The tradeoff between speed and torque is the gear ratio.
Planetary gears use multiple mechanisms to increase the gear ratio. Those using epicyclic gears have multiple gear sets, including a sun, a ring, and two planets. Moreover, the planetary gears are based on helical, bevel, and spur gears. In general, the higher gear ratios of epicyclic gears are superior to those of planetary gears.
Another example of planetary gears is the compound planet. This gear design has two different-sized gears on either end of a common casting. The large end engages the sun while the smaller end engages the annulus. The compound planets are sometimes necessary to achieve smaller steps in gear ratio. As with any gear, the correct alignment of planet pins is essential for proper operation. If the planets are not aligned properly, it may result in rough running or premature breakdown.

China supplier R58 1.5HP/CV 1.1kw Helical Gear Motor Reduction Motor raw gearChina supplier R58 1.5HP/CV 1.1kw Helical Gear Motor Reduction Motor raw gear
editor by CX 2023-05-18