Your Title Goes Here

Your content goes here. Edit or remove this text inline or in the module Content settings. You can also style every aspect of this content in the module Design settings and even apply custom CSS to this text in the module Advanced settings.

Click Here

Product Description

Product type sintered metal parts
Material Stainless steel,Steel(Iron,)Brass,Copper
Tolerance ±0.01mm
Application Tool industry
Shape Custom
QC system 100% inspection before shipment
Payment terms T/T at sight, Paypal, Western Union,etc.
Lead time 7-15 working days

Why Choose Us

1.  We have professional powder metallurgy production equipment and team;
2.  We can accompany customers to develop products;
3.  Just send an idea that you want to try, you don’t even need to know what powder metallurgy;
4.  Our sales will reply you within 24 hours to confirm further details and give the estimated quote time;
5.  Our team will evaluate your inquiry and provide our offer within next 1~3 working days.
 

Order Process

1.  You send us drawing or sample.
2.  We carry through project assessment.
3.  We give you our design for your confirmation.
4.  We make the sample and send it to you after you confirmed our design.
5.  You confirm the sample then place an order and pay us deposit.
6.  We start producing.
7.  When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
8.  Trade is done, thank you!!

Additional Capabilities CAD Design Services CAM Programming Services Coordinate Measuring Machines (CMM) Reverse Engineering
 

Product Show

Some Parts We Manufacture

Self-Lubricated Bushing
Structural Parts
Gears

About Us

DERYOUNG Technology company is a professional metal parts manufacturer, which with more than 20 years of experience in the development and production of sintered metals. Each year we produce more than 100 million premium sintered metal parts for our customers. We are mainly produce oil bearing, gear, and metal parts. We support our customers in the design and material selection of sintered parts, providing the best solution for your applied parts through our specialized equipment compression molds, furnaces, handling, sizing, deburring and impregnation processes.

Design Tips: Powder Metallurgy Gears

1.  Radius > 0.25 mm is required to manufacture the die;
2.  Helical teeth should feature a helical angle < 30º in order to limit side pressure on the punches;
3.  Introduction of a draft angle > 5º in the upper diameter reduce the tooling cost;
4.  The distance between tooth root and central hub diameter must be: > 3 mm (Robust Tooling).
 

The Powder Metallurgy Manufacturing Process

Characteristics of Powder Metallurgy Gears

Powder metallurgy (PM) is a versatile manufacturing process that involves the production of components from powdered metal. Gears manufactured using this process, known as powder metallurgy gears, possess several unique characteristics that make them highly desirable in various industries. In this article, we will explore some of the key features and advantages of powder metallurgy gears.

1. Cost-effective production: Powder metallurgy gears offer significant cost advantages compared to gears produced through traditional methods such as forging or machining. The PM process allows for a high material utilization rate, reducing wastage and minimizing production costs. Additionally, the elimination of expensive machining operations results in lower labor and tooling costs, making powder metallurgy gears an economical choice for gear manufacturers.

2. Design flexibility: Powder metallurgy gears provide excellent design flexibility, allowing for the production of complex gear geometries that are difficult to achieve using conventional manufacturing techniques. The PM process enables the production of gears with intricate shapes, including internal and external splines, helical gears, and bevel gears. This flexibility in design allows gear manufacturers to meet specific application requirements and optimize gear performance.

3. Enhanced material properties: Powder metallurgy gears exhibit superior material properties compared to gears made using conventional methods. The PM process allows for the use of a wide range of alloy compositions, including low-alloy steels, stainless steels, and non-ferrous materials such as bronze and brass. By carefully selecting the alloy composition and controlling the powder metallurgy process parameters, gear manufacturers can achieve desired mechanical properties such as high strength, wear resistance, and fatigue resistance.

4. Improved dimensional accuracy: Powder metallurgy gears offer excellent dimensional accuracy and tight tolerances. The PM process involves pressing metal powders into a die cavity, followed by sintering at high temperatures. This sintering process results in a net-shape or near-net-shape component, minimizing the need for secondary machining operations. The ability to produce gears with precise dimensions ensures proper meshing and alignment, leading to improved gear performance and reduced noise levels.

5. Enhanced surface finish: Powder metallurgy gears typically have a smooth surface finish, eliminating the need for additional finishing operations such as grinding or polishing. The sintering process helps to consolidate the metal powders, resulting in a dense and uniform structure. This uniformity contributes to improved gear surface quality, reduced friction, and enhanced gear efficiency.

6. Reduced material waste: The powder metallurgy process minimizes material waste compared to traditional manufacturing methods. The ability to accurately control the powder composition and shape during the pressing stage ensures efficient material utilization. Additionally, any excess powder generated during the pressing process can be recycled, further reducing material waste and contributing to a more sustainable manufacturing process.

7. Consistent quality: Powder metallurgy gears offer consistent and reliable quality. The PM process allows for precise control over the production parameters, ensuring consistent material properties and gear performance. This consistency is crucial for applications that require high precision and reliability, such as automotive transmissions, industrial machinery, and aerospace systems.

In conclusion, powder metallurgy gears possess several distinct characteristics that make them highly advantageous in various industries. Their cost-effectiveness, design flexibility, enhanced material properties, improved dimensional accuracy, enhanced surface finish, reduced material waste, and consistent quality make them a preferred choice for gear manufacturers. As technology continues to advance, powder metallurgy gears are likely to play an increasingly significant role in the production of high-performance gears.

FAQ
Q: How can I get the quotation?
A: Please send us information for quote: drawing, material, weight, quantity and request,w can accept PDF, ISGS, DWG, STEP file format.
   If you don’t have drawing, please send the sample to us,we can quote based on your sample too.
 
Q: What’s your MOQ?
A: In general 1000pcs,but can accept low quantity in some special conditions.
 
Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.
 
Q: What about the leading time for mass production?
A: Honestly, it depends on the order quantity. Normally, 15 days to 20 days after your deposit if no tooling needed.
 
Q: What if the parts are not good?
A: We can guarantee good quality,but if happened,please contact us immediately, take some pictures, we will check on the problem,and solve it asap.
 
Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance ,balance before shippment

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

spur gear

How do you ensure proper alignment when connecting spur gears?

Proper alignment is crucial when connecting spur gears to ensure smooth and efficient gear operation. Here’s a detailed explanation of how to ensure proper alignment when connecting spur gears:

  • Visual Inspection: Start by visually inspecting the gears, gear shafts, and associated components for any visible misalignment or damage. Look for signs of wear, uneven tooth engagement, or any abnormalities that may affect alignment.
  • Shaft Alignment: Align the gear shafts accurately before connecting the gears. Proper shaft alignment ensures that the gears are positioned correctly relative to each other. This can be achieved through various alignment techniques, such as using alignment tools, laser alignment systems, or measuring devices. The goal is to ensure parallel or coaxial alignment between the gear shafts.
  • Backlash Adjustment: Adjust the backlash between the gear teeth to achieve proper alignment. Backlash refers to the slight gap between the mating teeth of gears. It is important to maintain an appropriate amount of backlash to allow for smooth gear engagement and minimize the risk of binding or jamming. Follow the manufacturer’s recommendations or industry standards for the recommended backlash range and adjust as necessary during gear installation.
  • Check Gear Mesh: Verify the gear meshing pattern to ensure proper alignment. The gear teeth should mesh smoothly and evenly without any signs of excessive or uneven contact. If there are indications of improper meshing, such as concentrated contact on a specific area of the tooth, it may imply misalignment or other issues that need to be addressed.
  • Shim Adjustment: If misalignment is detected, shimming can be employed to correct it. Shimming involves placing thin metal shims between the gear and the shaft to adjust the positioning and alignment. Shims are available in various thicknesses, allowing for precise alignment adjustments. Careful measurement and selection of the appropriate shim thickness can help achieve the desired alignment.
  • Tightening Bolts: When connecting the gears to the shafts, ensure that the bolts or fasteners are tightened evenly and to the recommended torque specifications. Uneven tightening can introduce misalignment or uneven load distribution, leading to gear misalignment and potential issues.
  • Post-Installation Verification: After connecting the gears, perform a final verification of the alignment. Rotate the gears manually or through the gear system’s intended operation and observe the gear meshing behavior. Look for any signs of abnormal noise, vibration, or irregular tooth engagement. If any issues are detected, further adjustments or inspections may be necessary.
  • Regular Maintenance: Implement a proactive maintenance program that includes periodic inspections and alignment verification. Gears can experience wear or misalignment over time due to factors such as load variations, temperature changes, or prolonged operation. Regular maintenance allows for early detection and correction of alignment issues, ensuring optimal gear performance and longevity.

Proper alignment is essential for maximizing the efficiency, durability, and reliability of spur gear systems. By following these alignment practices and considering the manufacturer’s recommendations, industry standards, and expert advice, you can ensure proper alignment when connecting spur gears.

It’s important to note that the specific alignment techniques and procedures may vary depending on the gear system’s design, size, application, and other factors. Consulting with gear manufacturers, engineers, or alignment specialists can provide further guidance on the recommended alignment practices for your specific gear system.

spur gear

What is the lifespan of a typical spur gear?

The lifespan of a typical spur gear can vary significantly depending on several factors. Here’s a detailed explanation:

The lifespan of a spur gear is influenced by various factors, including:

  • Operating Conditions: The conditions under which the spur gear operates greatly impact its lifespan. Factors such as the magnitude and frequency of the applied loads, operating temperature, speed, and lubrication quality play a significant role. Gears operating under heavy loads, high speeds, or harsh environments may experience higher wear and fatigue, potentially reducing their lifespan.
  • Material Selection: The material used for constructing the spur gear affects its durability and lifespan. Spur gears are commonly made from materials such as steel, cast iron, bronze, or polymer composites. The specific material properties, including hardness, strength, and resistance to wear and corrosion, influence the gear’s ability to withstand the operating conditions and determine its lifespan.
  • Quality of Manufacturing: The quality of manufacturing processes and techniques employed during the production of the spur gear can impact its lifespan. Gears manufactured with precision, accurate tooth profiles, and proper heat treatment are more likely to have longer lifespans compared to those with manufacturing defects or poor quality control.
  • Lubrication and Maintenance: Proper lubrication is crucial for reducing friction, wear, and heat generation in spur gears. Regular maintenance practices, including lubricant replacement, gear inspections, and addressing any issues promptly, can significantly extend the lifespan of the gears. Inadequate lubrication or neglecting maintenance can lead to premature wear and failure.
  • Load and Stress Distribution: The design and configuration of the gear system affect the load and stress distribution on the spur gears. Proper gear design, including tooth profile, number of teeth, and gear arrangement, helps ensure even load distribution and minimizes localized stress concentrations. Well-designed supporting components, such as bearings and shafts, also contribute to the overall lifespan of the gear system.

It is challenging to provide a specific lifespan for a typical spur gear since it depends on the aforementioned factors and the specific application. Spur gears can have lifespans ranging from several thousand to millions of operating cycles. Industrial gear systems often undergo regular inspections and maintenance, including gear replacement when necessary, to ensure safe and reliable operation.

It’s important to note that gear lifespan can be extended through proper care, maintenance, and adherence to recommended operating parameters. Regular inspections, monitoring of gear performance, and addressing any signs of wear or damage promptly can help maximize the lifespan of spur gears.

When assessing the lifespan of spur gears for a particular application, it is advisable to consult manufacturers, industry standards, and experts with expertise in gear design and maintenance for accurate estimations and recommendations.

spur gear

Can you explain the concept of straight-cut teeth in spur gears?

The concept of straight-cut teeth is fundamental to understanding the design and operation of spur gears. Straight-cut teeth, also known as straight teeth or parallel teeth, refer to the shape and arrangement of the teeth on a spur gear. Here’s a detailed explanation of the concept of straight-cut teeth in spur gears:

Spur gears have teeth that are cut straight and parallel to the gear axis. Each tooth has a uniform width and thickness, and the tooth profile is a straight line. The teeth are evenly spaced around the circumference of the gear, allowing them to mesh with other spur gears.

The key characteristics and concepts related to straight-cut teeth in spur gears include:

  • Tooth Profile: The tooth profile of a spur gear with straight-cut teeth is a straight line that extends radially from the gear’s pitch circle. The profile is perpendicular to the gear axis and remains constant throughout the tooth’s height.
  • Pitch Circle: The pitch circle is an imaginary circle that represents the theoretical point of contact between two meshing gears. For a spur gear, the pitch circle is located midway between the gear’s base circle (the bottom of the tooth profile) and the gear’s addendum circle (the top of the tooth profile).
  • Pressure Angle: The pressure angle is the angle between the line tangent to the tooth profile at the pitch point and a line perpendicular to the gear axis. It determines the force distribution between the meshing teeth and affects the gear’s load-bearing capacity and efficiency. Common pressure angles for spur gears are 20 degrees and 14.5 degrees.
  • Meshing: Straight-cut teeth in spur gears mesh directly with each other. The teeth engage and disengage along a line contact, creating a point or line contact between the contacting surfaces. This direct meshing arrangement allows for efficient power transmission and motion transfer.
  • Advantages and Limitations: Straight-cut teeth offer several advantages in spur gears. They are relatively simple to manufacture, resulting in cost-effective production. Moreover, they provide efficient power transmission and are suitable for moderate to high-speed applications. However, straight-cut teeth can generate more noise and vibration compared to certain other tooth profiles, and they may experience higher stress concentrations under heavy loads.

In summary, straight-cut teeth in spur gears refer to the straight and parallel arrangement of the gear’s teeth. The teeth have a uniform profile with a constant width and thickness. Understanding the concept of straight-cut teeth is essential for designing and analyzing spur gears, considering factors such as tooth profile, pitch circle, pressure angle, meshing characteristics, and the trade-offs between simplicity, efficiency, and noise considerations.

China Good quality Custom Powder Metallurgy Steel Gear Metal Transmission Customized Spur Helical Gear Manufacturer gear cycleChina Good quality Custom Powder Metallurgy Steel Gear Metal Transmission Customized Spur Helical Gear Manufacturer gear cycle
editor by CX 2023-11-02

TAGs: